
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Dipolar and dispersion interactions in nematogens A computer simulation
study
S. Romanoa

a Department of Physics 'A. Volta', The University, and 'unita' GNSM-CNR/CISM-MPI, Pavia, Italy

To cite this Article Romano, S.(1988) 'Dipolar and dispersion interactions in nematogens A computer simulation study',
Liquid Crystals, 3: 3, 323 — 336
To link to this Article: DOI: 10.1080/02678298808086378
URL: http://dx.doi.org/10.1080/02678298808086378

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678298808086378
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1988, VOL. 3, No. 3, 323-336 

Dipolar and dispersion interactions in nematogens 

A computer simulation study 

by S. ROMANO 
Department of Physics ‘A. Volta’, The University, 

and ‘unita’ GNSM-CNR/CISM-MPI, via A. Bassi 6, 1-27100 Pavia, Italy 

(Received 30 July 1987: accepted 8 October 1987) 

A classical system, consisting of identical cylindrically symmetric particles, 
with centres fixed on a simple-cubic lattice, may or may not support nematic-like 
orientational order depending on the interaction potential. For example, a 
Lebwohl-Lasher potential model produces orientational order, as does an 
anisotropic London-de Boer dispersion potential restricted to nearest neighbours, 
although increasing its range destroys the orientational order and brings about a 
staggered configuration of the system. In consequence, a Maier-Saupe molecular 
field treatment is appropriate in the first two cases, but not in the last. On the other 
hand, according to computer simulation results, a purely dipolar interaction 
produces a low temperature antiferroelectric phase which can be regarded as an 
extreme case of a nematogen. We carried out Monte Carlo simulations on a 
potential model defined by a linear combination of dipolar and full ranged 
London-de Boer dispersion terms, in order to  study their competition. To save 
computer time and yet monitor the physically relevant changes, we have varied 
their relative weights, while keeping fixed both the temperature and the anisotropy 
parameter in the dispersion potential. Simulation results show that in energetic 
terms the two interactions are cooperative, whereas in structural terms their 
interplay brings about first a weak but recognizable increase of nematic ordering, 
and then its collapse with the onset of the staggered configuration. 

1. Introduction 
At present, realistic pair potentials at various levels of sophistication have been 

obtained for some simple molecules such as the inert gases, water, methane, nitrogen, 
oxygen and benzene, by combining a number of properties and techniques [ I ,  21, both 
experimental and theoretical; they have also been used for computer simulation 
studies. The molecular complexity of nematogens has so far mostly prevented the 
determination of their potentials of comparable quality (and their subsequent use in 
simulation experiments) [2, 31. 

Computer simulations of liquid crystals have been carried out on various potential 
models [4-241, mostly drastically simplified, yet producing long range orientational 
(nematic) ordering. As an addititional simplification, the lattice model approximation 
has often been used; its practical advantages and conceptual limitations are discussed 
elsewhere [25]. Simulation of hard elongated particles has proved rather fruitful [ 14-1 61, 
and the anisotropic overlap model proposed by Gay and Berne also seems appropriate 
[23,24]. The models adopted in the first computer simulation studies of liquid crystals 
consisted of cylindrically symmetric particles whose centres were restricted to a simple 
cubic lattice and interacting via a nearest neighbour pair potential given by 

y k  = -EP&. Uk), e > 0. (1) 
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Here {uk) are the unit vectors defining the molecular orientations, and P,(u, - u,) is 
the second Legendre polynomial [4-121. This potential is known to produce 
an ordered phase stable at  low temperature [26], and the resulting disordering 
transition has been extensively investigated theoretically [27-321. The corresponding 
P,(u, * uk) lattice model has also been studied via simulation [13], and been found to 
support an ordered phase. 

The functional form of the pair potential defined by equation (1) is unrealistic in 
various ways, for it assumes the interaction energy to be independent of the orientation 
with respect to the intermolecular vector. In order to overcome this limitation, we 
have simulated the behaviour [21] of a system of cylindrically symmetric particles on 
a simple cubic lattice, interacting via an anisotropic London-de Boer dispersion 
potential [33, 341 restricted to nearest neighbours. This pair potential is of particular 
interest because it was used in the original derivation of the Maier-Saupe molecular 
field treatment of nematic ordering [35]. The simulation results again showed the 
existence of a low temperature ordered phase, a broad qualitative agreement with the 
simpler functional form (l), and reasonable success for the molecular field approxi- 
mation. Later an attempt was made to increase the range of the dispersion potential 
[36], and it turned out that inclusion of interactions with next nearest neighbours does 
destroy the (overall) orientational order, and further increase of the potential range 
does not alter the result. 

Real nematogens usually possess appreciable multipole moments, mostly neglected 
in simulated models; the optimal mutual orientation of two linear point quadrupoles 
is a T-shaped geometry, so that we can expect this interaction to hinder nematic 
ordering. On the other hand, it is known that dipolar interactions are not essential 
for nematic behaviour, as can be seen from the existence of such a phase for 
p-quinquephenyl, but they can play a significant role in some specific cases, for 
example, the alkyl- and alkyloxycyanobiphenyls [37]. Moreover, both theoretical and 
simulation results indicate cases where they enhance the stability of a nematic phase 
[36, 381. 

In our previous work [39, 401, a simple cubic dipolar lattice was simulated and 
found to support an antiferroelectric phase at  low temperature, i.e. orientational 
order (as measured by a nematic or even rank order parameter) without spontaneous 
polarization. A qualitatively similar result was also obtained by simulating a two- 
dimensional array of purely dipolar plane rotators, with centres fixed on a square 
lattice [41]. Thus, both potential models can be regarded as extreme cases of model 
nematogens (extreme, because nematogenic molecules are not point-dipoles) [39-4 I]. 

The present paper aims at studying the competition between these two inter- 
actions, and reports Monte Carlo calculations on a classical system, consisting of 
cylindrically symmetric particles whose centres of mass are fixed on a simple cubic 
lattice and whose interaction potential is a combination of a dipolar and an anisotropic 
Londonae Boer dispersion term [33, 341. The pair potentials are 

yk = u,, + y,, 
where 
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and 
A = p2/(4n~,a3). (7) 

Here r~ is the nearest neighbour separation, {x,} are the dimensionless centre-of-mass 
coordinates and p is the value of the dipole moment; y is the relative anisotropy in the 
polarizability tensor 

Y = @,I - u,)/(ull + 2a,), (8) 

and v]  > 0 is the scalar component of the dispersion interaction [22]. In order to vary 
the relative weights of the two terms, we define 

= At .  (9) 

Calculations were carried out for different values of 5, while keeping both temperature 
and y fixed; this was done in order to save computer time while still monitoring the 
physically relevant changes of the system. 

2.  The ground states 
In this section we obtain some information about the ground states for the two 

separate potentials U and Vand for this combination. The ground state of the purely 
dipolar system is not known in general, but can be calculated after assuming a certain 
unit cell (or periodicity) and using a treatment due originally to Luttinger and Tisza [42] 
and then developed by other authors [43-481. This reduces the problem to calculating 
the eigenvalues and eigenvectors of an appropriate hermitian matrix whose dimension 
is 3 N ,  where N is the number of dipoles in the unit cell [see the Appendix]. After 
carrying out these calculations for eight dipoles, the lowest eigenvalue was found to 
have an energy 

U ,  = - 2.676A/particle, (10) 

associated with the continuously degenerate configuration D($, cp) [42, 481 

u = u(h, k ,  1 )  = (- I),+' sin $ cos cpe, + (- sin t+b sin 'pe, (11) 

x = he, + ke, + le,, V(h,  k,  1 )  E Z 3 ,  i + (- l ) h + k  cos $e3 .  

Here e,, e,, e,  are the orthogonal unit vectors of the cubic lattice, and the angles 
$ and cp can be restricted to 0 < $ < 4 2  and 0 < cp < n/4 [48]. (For arbitrary 
values of $ and cp, D($, cp) can be reduced to the set of vectors x and u obtained from 
equation (1 1 )  for h,  k ,  1 = 0, 1 .) 

The various isoenergetic configurations D($, cp) possible can be quite different in 
terms of their orientational order. This can be easily seen by calculating their nematic 
ordering tensor Qir($, cp), given by 
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q ,  = (3 cos2cp sin2$ - 

q2 = (3 sin2cp sin2$ - 1)/2, 

q 3  = (3 cos’$ - l)/2. 

The eigenvalue with the largest magnitude (to be denoted by i j )  ranges between -+ 
and + 1. We also define some specific configurations [48], i.e. 

D, = D(0, cp), vcp, where 4 = I ,  

0 2  = D(n/2, n/4), where i j  = - 1/2, 1 (14) 

D, = D(a cos (1/J3), n/4), where 4 = 0. 

D, is an antiferroelectric structure, with all the dipoles pointing along the f z axis; 
D,, or, in more general terms, D(n/2, cp), is a layered structure where all the dipoles 
lie in the (x, y )  lattice plane and form two interpenetrating antiferroelectric sub- 
lattices, whose directions make an angle 2cp. The configuration D3 consists of four 
orientationally ordered sublattices, whose dipoles point along the tetrahedral directions 
( I ,  1, I ) ,  (1, - I ,  - I ) ,  ( -  I ,  I ,  - I ) ,  (- I ,  - I ,  I),  giving no net dipole moment 
of the cell and no overall (nematic) orientational order. We could try using the 
Luttinger-Tisza treatment [42] on a larger unit cell, but then the problem quickly 
becomes computationally intractable, while the sample size is still small in comparison 
with those used in simulation; moreover, D($, cp) does not necessarily support overall 
nematic orientational order. 

We have performed Monte Carlo calculations on the pure dipolar model, at low 
temperature (T* = 0.2 and T* = 0.45, where T* = kT/A),  using different sample 
sizes ( N  = 1000 and N = 1728) and different initial configurations ( D , ,  D, and 0,). 
After equilibration, we found the same mean values within statistical uncertainty, and 
a rather large value of the order parameter, irrespective of the sample size 
and the initial configuration (see the following results and [39, 401). Thus, at low 
temperature, the continuous degeneracy is effectively reduced, and D, can be taken as 
the ground state for the pure dipolar model, or, to put it in a different way, typical 
low temperature configurations can still be described by equation (1 l),  but now $ is 
close to zero and both II/ and cp are probably spatially modulated [41]. 

As for the pure dispersion potential, when the two molecules are parallel to each 
other and to the intermolecular vector, their energy has a minimum - y(2y + 3y2); 
in contrast, when the two molecules are parallel to each other but perpendicular to 
the intermolecular vector, their energy is q ( y  - 3/21’), and this corresponds to a 
saddle point in the energy hypersurface [36]. 

We report in table 1 absolute values of the dispersion energies, for different lattice 
configurations and for different ranges of the potential; all the energies are negative, 
and the units are gy2/particle, since terms linear with respect to y in equation (4) cancel 
by cubic symmetry. On the basis of table 1 and of simulation results [21, 361 we can 
conclude that, for a pure nearest neighbour dispersion potential, D ,  is the ground 
state, whereas both D, and D3 are too high in energy; for a pure full ranged dispersion 
potential, D3 is the ground state, but D ,  and D, are now much closer to it  in energy. 
Thus, for the ground state of the combined potential we expect a transition from D, 
to D, occurring at some value of t. 
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Table 1. Absolute values of the dispersion energy, for different lattice configurations and 
different ranges of the potential: r - I ,  nearest neighbours; r - 2, next nearest 
neighbours; and r - 3, infinite range. All of the quantities have a negative and the units 
are qy2/particIe. 

~~ 

Configuration r - 1  r - 2  r - 3  

D, 6.000 5.8 13 5.817 
D2 5.250 5.859 5.879 
D, 5.000 5.875 5.900 

(k 0.0005) 

3. Computational aspects 
Periodic boundary conditions were used in the simulation [9, 251 and the long range 

character of the dipolar interaction was accounted for by using the Ewald-Kornfeld 
algorithm for lattice summations [49-531. Calculations were carried out on samples 
consisting of N = lo3 dipoles, the reduced temperature was fixed to T* = 0.2 and 
the anisotropy parameter was set to y = 0.8. Dimensionless reduced temperatures 
and energies are given by 

T* = k,T/A,  W* = (W)/ (NA) ,  (15) 

where ( W )  is the mean sample energy and W* is the mean energy per particle. 
Calculations were carried out for increasing 5, i.e. the equilibrated configuration 

produced at one value of 4 was used to start both the production run at the same value 
of 5 and the equilibration run at  the next higher one; the pure dispersion case is 
formally reported as < = 1 .  As an additional check, we carried out some calculations 
for decreasing 5, i.e. we took the equilibrated configuration at 5 = 0.125, changed 5 
to 0.05 and re-equilibrated, obtaining the same average results within statistical 
uncertainty. Equilibration runs took between 1000 and 2500 cycles (moves per particle) 
and production runs took between 2500 and 5000 cycles. Sub-averages for evaluating 
statistical errors were calculated over macrosteps consisting of 100 cycles; particles 
underwent random rotations according to the algorithm proposed by Barker and 
Watts [54]. 

The thermodynamic quantities calculated include the total potential energy W* 
and its components U* and V * ,  and the configurational specific heat C,* as the 
fluctuational quantity 

C,* = ( l / N ) [ (  W 2 )  - ( W)2]/ (kT)2 .  (16) 

The structural quantities calculated include the mean dipole moment per particle, 
orientational correlation functions, Kirkwood g factors and order parameters. The 
mean dipole moment per particle is given by 

and for all values of 4 its components were found to be zero within the statistical error 
( & 0.003), i.e. no spontaneous polarization developed, as expected. Orientational 
correlation functions were defined by [55]  
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as a function of n = Ixj - x k ) * ,  where PL(u, - uk) are Legendre polynomials, and 
L = I ,  2, 3, 4. The Kirkwood g factors are defined by [56] 

In keeping with nematics, we define the order parameters by the mean values 

where the unit vector v defines the director. Since its orientation is not, in general, 
known in advance and can change in the course of simulation, we 
more elaborate procedure. We have calculated for each macrostep 
second rank ordering tensor 

Qj.,  = ( 3 ( ~ ; . u p >  - dj.p)/27 

and its fourth rank equivalent 

SiiivQ = [35(uiupuv~,) - 5(6,Q(u;.up) + d,,(uiu,) 

had to follow a 
[8,  251 both the 

+ 6pv(uj,u,) + Sj.Q(upu,)  + di.v(uituQ) + dj.p(u\,uo>) 

+ (J ipd , ,  + di,dpQ + dj.Q~p)1/8~ (22) 

Q, is then diagonalized to obtain its eigenvalues {q , ,  q2, q,} and eigenvectors 
(z,, z2, t?, 3. The eigenvector associated with the eigenvalue with the largest magnitude 
gives the director orientation in the laboratory frame; additional checks indicate it to 
be stable over the macrostep length used here [25] .  In order to compensate for director 
fluctuations over several macrosteps, we reordered the eigenvalues first, and then 
averaged them; this can be achieved by different schemes [39]: 

(a) by the even permutation producing the numbers {r j l j  = 1, 2, 3 )  such that 

(h )  by the even permutation producing the numbers {s,} such that Is, I < Is,I and 

(c) by the even permutation producing the numbers ( t k }  such that It, I >, It,] and 

Let { i ; , }  be their averages over all macrosteps; we found for all 4 values F, 3 I9,I 3 2lGl; 
moreover, in the ordered region, we have Fj = 9,, S, > 0 and TI = Y2 within statistical 
error; in the disordered region the order parameter should be zero apart from sample 
size effects: here we found F, > 9, and 9, z 2& within the combined statistical errors. 
The quantity i;, is expected to overestimate the amount of orientational order, whereas 
2161, if anything, is expected to underestimate it; this quantity has been proposed as 
an appropriate order parameter in the disordered region [14]. Thus, also in the present 
case [39], the choice of S, as the relevant order parameter is found to be consistent for 
all values of 4 .  

The eigenvectors { z X }  define the column vectors of an orthogonal matrix A 
such that 

y I  d r ,  and r2 d r , ;  

Is21 d hl; 

It21 2 Ihl. 
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which, in turn induces an orthogonal transformation of S 
7 7 7 7  

reordering the eigenvalues of Q,,  also induces a corresponding reordering of indices 
of SipPQ to produce Scve. 

Alternatively and equivalently, we can take {z;} to be the suitably reordered 
eigenvectors defining the orthogonal matrix B and the transformation 

3 3 3 3  

ScvQ = C c 1 C BiiBujBv,Bp/Sijk/. 
i = l  . / = I  k = l  / = I  

We define [8] 

p4 = %33, 

where the bar denotes an average over all macrosteps. 

4. Results and discussion 
The results for the potential energy are shown in table 2, they indicate a regular 

decrease of both U* and V* with increasing 5 .  Thus in energetic terms, the two 
interactions are cooperative. The configurational specific heat was found to range 
between 1.0 and 1.1, with a statistical uncertainty of the order of 5 per cent for all 
examined values of 5 ,  so we can take the common value of 1.05 0.05. For the 
structural properties, the order parameters are shown in figure 1 and the Kirkwood 
g factors are shown in figure 2; the orientational correlation functions for some 
selected values o f t  are shown in figures 3 to 6. In the ordered region, both p ,  and P4 
agree with the long-range limit of the correponding correlation functions, according 
to [25] 

p; = lim GL(n),  L = 2, 4. (27) 
n - r m  

In structural terms, at the temperature considered, the system exhibits a rather high 
degree of sub-lattice ordering, as indicated by the pronounced oscillations of the 
correlation functions; moreover, the interplay of dipolar and dispersion interactions 
brings about first a small but recognizable increase of the overall long range nematic 

Table 2. Energy results, in units Alparticle a t  the temperature T* = 0.2; the statistical 
error is usually within 0.25 per cent. 

5 - u* - v* - w* 
0 
0.025 
0.05 
0.075 
0.0875 
0.1 
0.125 
0.15 
0.175 
0.2 
1 

2.476 
2.499 
2.516 
2.531 
2.536 
2.541 
2.551 
2.560 
2.568 
2.575 
- 

- 

0.067 
0.141 
0.219 
0.265 
0.306 
0.390 
0.476 
0.563 
0.650 
3.570 

2.476 
2.566 
2.657 
2.750 
2.801 
2.847 
2-9 12 
3.036 
3.131 
3.225 
3.570 
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- 0.4 I * 4  

* + +  

Figure 1. Plots of the order parameters (a) p 2 ,  (b) P , ,  versus 5 .  

Figure 2. Plots of the Kirkwood g factors (a) g,, ( b )  g,, versus (. 

ordering, then its decrease and breakdown, followed by the ultimate onset of a 
&-like configuration. This can be seen most clearly by comparing the correlation 
functions for < = 0.15 with those for 5 = 1 (cf. figures 3 to 6), and can be ration- 
alized in terms of relative stabilities of the (ground-state) configurations D, and 
D, ' 
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O ' O 5  

-0.5' 

Figure 3. Plots of C,(n) for different values of 5 and different configurations; (a) 5 = 0; 
(b)  5 = 0.15; (c) D,, D,, and D,. 

A A A  A A A  A 

1 

.. .. .. .. .. 
.I I. I .  I. 1 '  1 PeP 

0 0  0 0  0 0  I I  :: : 

-0.5 

Figure 4. Plots of C,(n) for different values of 5 and different configurations: (a )  5 = 0; 
(b) 5 = 0.15; (c) 5 = 1; ( d )  D,; (e)  D,. 

The present results show that the anisotropic de Boer-London dispersion potential 
alone cannot possibly be responsible for nematic behaviour, or at least not for this 
lattice model. Such a result may seem to conflict with the well-known molecular field 
result obtained by Maier and Saupe [35],  but it should be noticed that, upon using the 
molecular field averaging procedure, different (even radically different) potentials are 
reduced to the same pseudopotential. In order to make this point more perspicuous, 
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.. - *  .. 
( c )  .. I. . I  .I .I . I  

D 

m a 
o m  m m  D . .. .. .. .. .. . 

(b)  

1 I 
*om 

D n.+ o m '  
00 

(a) 

0 0  0 0  0 0  0 0  0 0  0 0  0 

(d) 

Figure 5. Plots of G,(n) for different values of 5 and different configurations: (a) 5 = 0; 
(b)  5 = 0.15; (c) D,; ( d )  D, and D z .  

1 .o 

G,(n) 

0.5 

0.0 

-0.5 

M e ) o  o 0 0 0  0 0 0  0 

(d )  

( b )  

A A  A A  A A  A A  A A  A A  A 

.. .. .* . 

Figure 6. Plots of G,(n) for different values of 5 and different configurations: (a) 5 = 0; 
(b) ( = 0.15; (c) 5 = I ;  ( d )  D,; ( e )  D,. 

let us reconsider the molecular field averaging procedure for the dispersion potential on 
a simple cubic lattice [21]. When the potential is restricted to nearest neighbours, it does 
sustain orientational order and its molecular field averaging gives a pseudopotential 

P(p) = - 12qy*P,(cOs p), (28) 
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where p is the angle between the molecular symmetry axis and the director; the 
molecular field treatment is, in this case, a reasonable approximation. Inclusion of 
next nearest neighbours destroys the long range orientational order (see also table l), 
yet molecular field averaging of the resulting potential can be repeated along the lines 
of [21] and yields 

P(p) = -(93/8)~fP,(cos PI, (29) 

with the same meaning of symbols. Equations (28) and (29) define the same functional 
form (apart from a scaling factor), but now this kind of molecular field approach is 
physically meaningless. The existence of a director has been assumed in both cases: 
it makes sense in the former but not in the latter. 

In a recent paper by Sadreev [57], the absence of long-range orientational order 
for a purely dipolar lattice is proved. On the other hand, both analytical and numerical 
results for other cases [18, 581 point to the conclusion that the absence of order in 
the thermodynamic limit need not exclude its existence for a macroscopically large 
sample. For example, it is sometimes possible to prove [58] that the relevant quantity 
(order parameter or transition temperature) vanishes in the thermodynamic limit like 
0(1/ln N ) .  

The present calculations were carried out using, amongst other machines, a 
VAX VMS 11/780 computer, partly supported by funds from the Italian Ministry of 
Education (fondi 40% del Minister0 della Pubblica Istruzione); computer time on a 
CRAY machine was allocated by the Italian CNR. The author wished to thank 
Professor G. R. Luckhurst (Department of Chemistry, The University, Southampton) 
for helpful discussion and suggestions. 

Appendix 
Here we give an outline of the Luttinger-Tisza treatment [42-48]. The dipolar 

potential (cf. equation (3)) can be written as 
3 3  

where the subscripts CI and b refer to Cartesian components and the dipolar interaction 
tensor is defined by 

O ( ~ C I ,  kp) = (- 3R,Rp + R2Gap)/RS. (A 2) 

Let the cubic unit cell of the system contain N = v 3  dipoles, and let E = {uJal j  = 1, 
2, . . , , N ;  CI = 1, 2, 3 )  define an arbitrary configuration of it, whose corresponding 
energy per dipole is given by 

u/A = (1/2N) 1 UJU 1' e(.b, k f l ) U k p .  (A 3) 
J,a k,P 

Here the subscriptj runs over all particles in the unit cell, whereas the subscript k runs 
over all particles in the unit cells and all their lattice images. Taking periodicity into 
account, this expression can be rewritten as 
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where 
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@( j a ,  k p )  = 1' (- 3susB + ?SaB)/s5. (A 5 )  

s = (Xj - Xk) + VL, (A 6 )  

~ € 2 3  

and both j and k now run over all particles in the unit cell. The sums appearing in 
equations (A 3) and (A 5) exclude the case j = k and L = 0, as indicated by the 
primes. 

The tensor 0 possesses the symmetry properties 

kp)  = @(kB, ja) ,  @(&, jB) = a,, @(ja, ja), (A 7) 

where @( j a ,  j a )  is independent o f j  and a. The configuration E defines an element in 
a real vector space F whose dimension is 3N; on the other hand, let i = {[ ,El j  = 1, 
2 ,  . . . , N; a = 1, 2,  3) be an arbitrary non-null element of F which, without loss of 
generality, can be assumed to (or be redefined so as to) have norm N, i.e. 

The element [ thus defines a configuration of the unit cell if and only if its components 
satisfy the condition 

1 3 ( 2  = 1, V j .  
u = l  I [ "  

The stronger condition (A 9) implies the weaker one but not the converse. Equations 
(A 3) and (A 5) for the energy of a configuration can be rewritten 

o = i  b = l  

so that it is now a quadratic form in F space. Let e, indicate the eigenvalues of the 
tensor, and Po = (&) indicate its eigenvectors, constituting an orthonormal basis of 
F, normalized according to equation (A 8). Owing to completeness, each vector of F 
can be expanded 

3N 

5 = c copo 
o= I 

so that equations (AS), (A 9) and (A 10) read 

a =  I 

The standard procedure for determining the extrema of equation (A 12) under the 
constraints (A 13) and (A 14) is the use of lagrangian multipliers, which proves rather 
cumbersome [42]. It turns out to be easier and quicker first to minimize the energy 
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under the weak constraint alone, and then to check by inspection whether the strong 
one is satisfied. We carried out calculations for N = 8, and found triply degenerate 
eigenvalues (owing to the underlying lattice symmetry), with eigenvectors satisfying 
the strong constraint. 
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